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Initial hint for neutrinos
Nuclear a nucleus change to a different nucleus by emitting an electron

electron »
In this case, the energy of the electron
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What are neutrinos

Neutrinos;
v’ are fundamental particles like electrons and quarks,
v’ are something like electrons without electric charge,
v’ can easily pass through even the Earth, but can interact with matter very rarely,
v’ have, like the other particles, 3 types (flavors), namely
electron-neutrinos (v,), muon-neutrinos (v,) and

o)

Muon-neutrino

Electron-neutrino _
(or mu-neutrino)

v’ have been assumed to have no mass.




Why are neutrinos so important?

3rd generation J

2nd generation J
Neutrinos

1st generation “? (with some assumptions) JJ

3 Quarks

@& Charged leptons
) (electrons, etc.)
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Mass (eV/c2?)

The neutrino mass is approximately (or more than) 10 billion (10 orders of magnitude)
smaller than the corresponding mass of quarks and charged leptons!
We believe this is the key to better understand elementary particles and the Universe.
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A big mystery
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The future is exciting

v"We would like to know if neutrinos are related to the origin of the matter in the
Universe.

v"We would like to observe if neutrino oscillations of neutrinos and those of anti-
neutrinos are different. = We need the next generation long baseline experiments
with much higher performance neutrino detectors.
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Morocco in the Hyper-K project



Kamioka Water Cherenkov Experiments

Cherenkov light
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Kamioka Water Cherenkov Experiments

Location:
v" Tochibora mine (Mt. Nijugoyama)
650m overburden (1755 m.w.e.)
Size:
v' 71m (height) x 68m (diameter)

260 ktonnes total
188 ktonnes fiducial

Photosensors:

v' 20% photocathode coverage with new 50cm Hamamatsu 'box & line' PMTs
o 1ns TTS; half that of SK PMTs

o Quantum efficiency double that of SK PMTs.
v' Supplemented by additional arrays of 3” multi-PMT (MPMT) assemblies




Physics Goals of Hyper-K

Broad physics programme

v" Neutrino oscillation
o Atmospheric neutrinos (still statistics limited!)
o Accelerator neutrinos
— focus on CP violation & mass ordering
o Solar neutrinos

v' Proton decay

v' Neutrino astrophysics
o Supernova burst
0O(10,000) events expected @ 10 kpc
o Supernova relic neutrinos

v' Additional astrophysical topics
o Dark matter

Indirect WIMP searches
o Multimessenger astronomy
o Gamma ray burst searches



Hyper-Kamiokande : Other aC///t/es

Much larger detector — significantly higher statistics —
need better systematics

* Improved near detector (ND280) at Tokai
New ”Intermedlate Water Cherenkov Detector”

i
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"Atmospheric neutrinos :
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Solar neutrinos, Y,

Supernova bursts B

Proton Decay Search

CP violation, oscillation parameters




Hyper-Kamiokande Collaboration

~500 researchers, 99 institutions
from 20 different countries

Last in-person meeting ~ ¥&

February 2020 o




Hyper-Kamiokande Collaboration

~500 researchers, 99 institutions
from 20 different countries
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Morocco is the only country
from the African continent

Four Universities : Mohammed VI (UMG6P), Hassan Il (UH2),
Mohammed V (UM5) and Ibn-Tofail (UIT)
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Timeline

Today

2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 20%72and
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V/ | operation
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Project Status

2020 ) 20210 2022 ) 2023 ) 2024 ) 2025 ) 2026 ) 2027
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Operation
starts 2027
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Moroccan Participation : Tasks

v’ The Moroccan contribution focus in three main parts : Detector Calibration, Physics
analysis (algorithms developments) and the computing Grid.

v’ Far detector calibration tasks:
O D-T Generator
O Source deployment system
O Pre-calibration of photosensors

v’ Physics analysis : Three analysis already started at Kénitra : CPV in leptonic sector in
collaboration with LSU (USA), Proton decay and atmospheric bkg

v The computing contribution :
o Participate to the Hyper-K software development
o Start with a Tier-3 at Ibn-Tofail University, Kénitra
o With aim to have a Tier-2 at Toubkal HPC in UM6P, Ben-Guerir



R&D : Moroccan Participation (construction phase)
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Pre-Calibration of PMTs

Ex-situ calibration (Before the installation)

v' All PMTs will go through basic set of tests
(will take 6 months).

v’ 2% of the PMTs will go through a more
detailed characterization programme, and
will be distributed uniformly in the detector.

v Tests will be done in special dark rooms: the
Photosensors Test Facilities (PTFs).




LINAC

v’ Used to calibrate the energy scale for D2 MAGNET /  maniacner e
low energy physics. e TACNET
v' Delivers a low energy electron beam gﬂz % 1
e
at periodical intervals (7 energies and o ]
9 positions for SK). N R
| —"—
v" Uncertainties of 0.2-0.3% in the low PEAMPIPE 1 o
energy scale and of 2% in the energy
resolution are desirable. ,
v In SK the LINAC -calibration was T | : L )
required, and so it will be for HK. . 6800 cm J Y




Calibration Infrastructure

e V' Hyper-K  will use a vertical

!DJ deployment system that can be

0D Wiate moved between calibration ports
on the upper endcap.

v’ 50 calibration ports will be
distributed across the detector.

140 km 140 lelZ{] cm 1050 cm 1050 &
—
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DT Generator (DT-G)

v’ Cross calibrates the energy.

v' The deployment of the D-T generator will occur by
lowering it into the water through several

) ©
calibration ports and into different depths per port. TE rﬁ

v' The system design and production is co-shared
between Moroccan institutes and both LSU and UCI
Universities from USA p retme—plh
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Simulation & reconstruction overview

HK far detector (baseline design) simulation

v" New trigger & DAQ framework
to use same code for real and
simulated data ToolDAQ :
https://github.com/ToolDAQ

Analysis

Inner detector

Outer detector

Low-energy
Detector design reconstruction:
Detector BONSAI / LEAF
simulation:
Event t .
si\r/:l:]latg WCSim
High-energy
| reconstruction:
| fiTQun
Data Trigger & DAQ i
|
|
|
|

Machine-learning
—-—+  reconstruction:
WatChMaLlL

(PMTs facing inwards) PMTs facine outwards

WCSim can easily simulate different detector setups

Simulated muon in outer detector


https://github.com/ToolDAQ

Machine learning reconstruction

Limit of traditional reconstruction methods is being reached

v' Computation time is becoming a limiting factor

o Larger detector with more PMTs

o Improving resolutions requires more complex algorithms

Machine learning algorithms have potential to push further

v Potential to use all available information without detector
model assumptions / approximations

v’ Very fast to run once neural networks have been trained

v" Now becoming common throughout HEP applications

v" But many new challenges...



Conclusion

v' Hyper-K detector is proposed as a next generation under-ground water Cherenkov
detector with an extremely rich physics potential discovery.

v' Hyper-K is capable of observing proton decays, HEP neutrinos, atmospheric and
solar neutrinos, and neutrinos from other astrophysical origins.

v In order to achieve the desired level of systematic error, a detailed understanding of
the detector must established, such that any data/MC discrepancies can be
understood.

v' Several in-situ calibration sources will deployed prior installation of PMTs, and
integrated ones will be used for monitoring detector stability during data taking.

v' Moroccan participation to the construction phase is so important, improve the
physics potential discovery by development of two calibration systems locally, grid
computing and many analysis physics.



Thank you so much for your attention
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Trilogy’s conclusion?
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Bref History @Kamioka: Proton decay experiments

v In the 1970’s, new theories of elementary particles predicted that protons
should decay with the lifetime of about 1039 years.
v’ Several proton decay experiments began in the early 1980’s.

e | , Kamiokande
AT SN e (Japan)




Atmospheric neutrino deficit (1980’s to 90’s)

v’ Proton decay experiments in the 1980’s observed many atmospheric neutrino events.

v’ Because atmospheric neutrinos were the most serious background to the proton decay
searches, it was necessary to understand atmospheric neutrino interactions.

v" During these studies, a significant deficit of atmospheric mu-neutrino events was
observed.

Takaaki Kajita Said : Although we had no clear idea what was the cause of the deficit, |
was most excited with the data. | thought that the data indicated something new. As a
scientist, it was the most exciting time. | decided to concentrate on this topic.




Neutrino oscillations

If neutrinos have mass, neutrinos change their type from one type to the other.
For example, a mu-neutrino may change the type to a

http://dchooz.titech.jp.hep.net/nu_oscillation.html (slightly modified)

B A0 5.5 .0 .0 00005

mu-neutrino mu-neutrino

arXiv:0910.1657

Neutrino oscillations were
predicted more than 50 years ago

{
by Maki, Nakagawa, Sakata, and by \

:34' e S Sakata, Z. Maki,

Pontecorvo. Eeekta Memoriabrchiva (@ M. Nakagawa B. Pontecorvo

\ )
y
5
5
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http://dchooz.titech.jp.hep.net/nu_oscillation.html

What will happen if the deficit is due to neutrino oscillations
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Evidence for neutrino oscillations (Super-Kamiokande @Neutrino “98)
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Many exciting results in neutrino oscillations (partial list)

Atmospheric neutrino oscillation exper/ments Solar neutrino

Cube Lab

oscillation experiments

2450 m|

\\ 2820 m.—

Accelerator based neutrino
oscillation experiments

1) G S

S5A5.




: https://j-parc.jp/Neutrino/en/nu-facility.html
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e T2K Near detectors INGRID and ND280 measure beam structure and
composition 280 m downstream.

 Measurements constrain uncertainty on flux and neutrino interaction models
* Events samples from ND280 used in oscillation fit to near and far detector data

* Upgrades underway in 2022/23 to improve angular acceptance of the ND280
tracking detector
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Long Baseline Physics 6

Probe CP-violation through comparison of

P®, »9) and P(J, - 9Y,)

e Select 1ring e-like events in far detector

* 10yearsrunning, 1:3 9,:9,

run plan
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Mass Ordering

* If mass ordering is not known, combination of beam measurements
with atmospheric neutrino observations resolves parameter degeneracy

HK 10 years (2.70E22 POT 1:3 viV) HK 10 years (2.70E22 POT 1:3 v:v)
Mo Beam (Known MO) =2 Beam (Known MO)
< | e - Beam (UnknownMO) e Beam (UnknownMO)
Atmospherics (UnknownMO) — Atmospherics (UnknownMO)
c Combined (Known MO) c —— Combined (Known MO)
2 Cm s ——— Combined (UnknownMO) =~ R Combined (UnknownMo) =~
3 3
© [
X X
D [¢b]
o o
I I
- a
O O
e e
= =
wn wn
0 0
Hyper-K preliminary True & Hyper-K preliminary True &
True normal ordering, improved syst. (ve/ve Xsec. error 2.7%) True inverted ordering, improved syst. (ve/v. Xsec. error 2.7%)

sin2(613)=0.0218 sin2(623)=0.528 |Am§2|= 2.509 x 103 eV?/c* sin2(613)=0.0218 sin2(623)=0.528 |Am§2|= 2.509 x 103 eVv?/c*




Probe 2-3 mixing through dip in P(9, — 9,)
and P(9, - 9)

Select 1 ring plike events in far detector
10 years running, 1:39,: 9, run plan
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Neutrino Astrophysics — Supernova Bursts

* Expected time profile and event numbers in HK for a supernova at 10 kpc
(Livermore simulation)
» numbers in brackets total interactions integrated over the 10 s burst ~ DAQdesigned to

] cope with peak data
* peak event rate of inverse beta decay events (black) reaches Y50 kHz  4tes from very close

* Model discrimination - arXiv:2101.05269 SN (eg. Betelgeuse)
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https://arxiv.org/abs/2101.05269

* Hyper-K far detector has many protons!

* Can extend proton decay search by an order of magnitude beyond current
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20k 50 cm Box and Line Dynode ID PMTs

e 2.6 ns timing resolution
» 2 X SK PMT efficiency
* Mass production and QA commenced 2021

nee MPMT units
: * 19,8 crn PMTs + electronics inside single pressure vessel
* Directional information, improved spatial and timing resolution

Outer Detector:
8 cm PMTs + WLS plates

Underwater electronics
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